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Abstract-When a moving singularity in a linearly elastic solid admits, in its steady state, an
asymptotic eigen-expansion of variable-separable type, its asymptotic expansion in an unsteady
state can be obtained systematically. A simple, straightforward method is presented here for deriving
the transient, asymptotic, elastodynamic local fields near such moving singularities, The method
makes use of the steady-state solution, and turns a transient problem into finding the particular
solutions of a set of second-order ordinary differential equations, which have constant coefficients
and nonhomogeneous terms involving only cosine and sine functions. The method is employed to
obtain transient plane elastodynamic near-tip fields for a crack growing in a homogeneous, isotropic
and linearly elastic solid. The fields are given in terms of two displacement potentials, applicable to
general mixed-mode crack growth cases, from which crack-tip stress and deformation fields can be
readily derived. Such transient solutions will be useful in numerical simulation as well as experimental
interpretation of dynamic crack propagation events.

INTRODUCTION

The transient feature ofmode I plane elastodynamic near-tip fields during crack propagation
has recently been investigated by Freund and Rosakis (1992) and Rosakis et al. (1991). It
is found that the square-root-singular term alone in the steady-state asymptotic expansion
of the crack-tip fields does not fully describe the crack-tip state during transient crack
growth, which is attributed to the dependence of local fields on the past history of time­
dependent quantities such as crack velocity and stress intensity factor. They demonstrated
experimentally that by incorporating transient higher-order expansions an accurate descrip­
tion of crack-tip fields under fairly severe transient conditions can be achieved.

The availability of series expansions of transient crack-tip fields will provide a strong
foundation for the interpretation ofexperimental measurements in dynamic fracture testing.
The importance of utilizing multi-term field expansions, such as that for steady-state crack
growth (Nishioka and Atluri, 1983), can be seen from the pioneering work of Sanford and
Dally (1979), as well as a more recent study by Chao et al. (1992), among others. Inclusion
of transient terms in the field expansions will naturally improve the accuracy and reliability
of the aforementioned experimental investigations. Apparently, the usefulness and necessity
of transient higher-order asymptotic expansions are certainly not confined to propagating
cracks or to the interpretation of experimental measurements. They can be extended to
describe responses of stationary cracks and other singularities under dynamic loading
conditions, and can be used effectively in numerical simulations of such singularities during
transient dynamic events. Further effort in this area is well-justified and worth pursuing.

In this article, a general and systematic method, which provides an alternative to that
used in Freund and Rosakis (1992), is proposed for the derivation of transient, asymptotic,
elastodynamic local fields near moving singularities such as growing crack tips. In this
method, the transient solution is treated as the sum of that of the counterpart steady-state
problem, modified slightly, and a correction term that is solved as a particular solution of
an ordinary differential equation. The method is used to obtain transient near-tip fields, in
terms of two displacement potentials, for a crack propagating in a homogeneous, isotropic
and linearly elastic solid under general plane (plane strain or plane stress) deformation
conditions. Explicit expressions for displacements and stresses in crack-tip polar coordinates
can be readily derived from these two displacement potentials obtained in this study. These
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mixed-mode results are complementary to the mode I solutions of Freund and Rosakis.
Counterpart transient analyses for a stationary crack under dynamic loading, for all three
fracture modes, are more involved mathematically and are reported separately (Deng,
I992a).

PROBLEM FORMULATION

Consider a plane elastodynamic problem in a domain occupied by a homogeneous,
isotropic, and linearly elastic solid. In a rectangular (x,y) coordinate system, displacements
Ux and Un and stresses (JX' (Jy and (JxV' can be expressed as [see, for example, Freund (1990)]

a¢ aljJ
U, = ax +8y'

(Jx k+la2¢ 3-ka2¢ a2ljJ
-= ...._--+ -+2--
J.l k - I ax2 k - I ay2 ax ay'

(J.. 3-k a2¢ k+ I a2¢ iYljJ
~=--+---2--
J.l k-l i3x2 k-l ay 2 i3xi3y'

(JXY (j2ljJ a2ljJ a2¢_. - --+--+2--
J.l - ax2 ay 2 ax i3y'

(1)

(2)

where J.l is the shear modulus; k = (3-11)/(1 +v) in plane stress and (3 -411) in plane strain,
11 being the Poisson's ratio; ¢ and ljJ, both functions of position (x,y) and time t, are
displacement potentials satisfying the following wave equations:

(3)

where D t , D s and Dr are differential operators. For the sake of asymptotic analysis, we
assume that a point singularity is moving along a straight line, say, the positive x-axis, with
speed v(t) at time t. Now let the coordinate system sit at and move with the singularity
relative to an inertia frame. Then the differential operators D" Ds and Dr can be written as:

(4)

where Cs = (J.l/p) 1/2, C, = [(k+ 1)/(k-l)] 1/2C, and IXp = [1- (v/Cp) 2] 112, fJ = I, s. If we define
the distorted polar coordinates (rp,Op) as those associated with the scaled rectangular
coordinates (x, IXpy), where fJ = lor s, then we can write the differential operators for ¢ as

(5)

Those for ljJ are obtained by switching subscript I to s in eqn (5). As cautioned in Freund
and Rosakis (1992), (Xp, rp and Op (/3 = I, s) will depend on time t if speed v is not constant.

When the time derivatives Dr¢ and DrljJ are identically zero, equations in (3) become
harmonic and their solutions can be expressed in terms ofanalytic functions. These solutions
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are said to be steady-state for a moving singularity. When the time derivatives in (3) are
not negligible, solutions obtained are called transient.

SOLUTION METHOD

Consider a point singularity such as the tip of a moving wedge or crack, and assume
that it admits a steady-state asymptotic solution of variable-separable type. Such solutions
are readily obtainable with well-established techniques such as eigen-expansion (Williams,
1952,1957) and complex-variable representation (Muskhelishvili, 1953; Radok, 1956). For
example, complete near-tip expansions have been given by Nishioka and Atluri (1983) for
steadily propagating cracks in homogeneous, isotropic, and linearly elastic solids; and by
Deng (1991, 1992b) for steadily-propagating interfacial cracks in dissimilar isotropic as
well as anisotropic elastic bimaterials. The steady-state solutions will be denoted here as <Po
and ljJo, which, if admitting variable-separable eigen-expansions, will have the following
form:

00

<Po = L [a. I cos A.O, +a.2 sin A.Otlrfn,
n= I

00

IjJ 0 = L [b. I COsA.Os+b.2sin A.Os]r;n,
.~ I

(6)

where A. (n = 1,2, ...) are eigenvalues, with real parts arranged according to
Re (AI) < Re (A2) < "', and coefficients a.I. a.2, b. 1 and b.2 are related such that local
traction and displacement boundary conditions at the singularity are satisfied.

Under transient conditions, the steady-state solution must be modified to include any
disturbances due to transient effects. A first-order approximation would be to let coefficients
a.I. a.2, b. 1 and b.2 in eqn (6) be time dependent. Since both <P and IjJ are governed by the
same type of equations, the following method, which equally applies to <P and 1jJ, will be
discussed for <P only. Now to derive the transient solution from the steady-state one, let

(7)

where <p* is a correction term and <Po now has time-dependent coefficients. Substitution of
eqn (7) into (3) yields this nonhomogeneous governing equation for <p*

(8)

The advantage of this method is that the form of the solution for <p* is indicated by that of
<Po, which is available in eqn (6). It can be seen that substitution of eqn (6) into (8) will
yield a nonzero right-hand side with a variable-separable expansion in rl and 01• This feature,
along with the polar form of operator DI as shown in (5), suggests that a solution for <p*
will also admit a similar expansion, whose exact form depends on the relations between the
eigenvalues. For example, for cracks and 180°-angled wedges under various local crack­
surface or wedge-edge boundary conditions, the following expansion can be made:

00

<p* = L /,,(01, t)rfn.
.~I

(9)

From eqns (6), (8) and (9), and by collecting terms with the same powers of rl, a set of
linear ordinary differential equations can be obtained for /,,(01, t), with time t as a parameter.
These equations are homogeneous for the first few (two or four) leading terms, and
nonhomogeneous for all other higher order terms. The solutions of these equations are
composed of a homogeneous part and a particular part, which are zero for the first few
leading terms. It can be shown that the forms of the homogeneous solutions of these
equations are identical to those in eqn (6), meaning that they can be incorporated into (6)
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by modifying the coefficients anl(t), aIl 2(t), blll(t) and bIl2 (t). The relations between these
coefficients must be updated from local boundary conditions with the effects of the transient
term ¢* taken into consideration. Therefore, to find ¢ one only needs to mod(fy the expansion
coefficients in ¢o, andfind, for ¢*, the particular solutions of a set of nonhomogeneous,
linear, ordinary differential equations, usually only involving cosines and sines of ()t. This
method is now used to obtain the transient elastodynamic near-tip fields for a moving crack.

PROPAGATING CRACK-TIP FIELDS

Consider a crack that is propagating at a speed v(t) along the x-axis in a homogeneous,
isotropic, and linearly elastic solid and under general mixed-mode conditions. Suppose the
coordinate system is situated at, and translates with the crack tip, with the negative x-axis
coinciding with the traction-free crack surfaces. The eigenvalues given by Williams (1957)
for stationary cracks are still valid in this case [for example, see Nishioka and Atluri (1983)],
that is, ;-11 = n/2+ 1 (n = 1,2, .. .). Using the proposed method, one has

¢o = L [aliI cos (n/2+ l)()t+aIl2 sin (n/2+ 1)(),]ri!2+ 1,

n= 1

.X-

¢* = L !n(()t, t)ri/2+ I,

n= 1

(10)

where it is noted again that r, and (), will depend on time t if the crack speed v is not constant.
To account for this time dependence, note the following relations:

a(), v dv.- = - --- --- sm 2(),
at 2r:t}c? dt '

art v dv-- = - -- -(I-cos 2(),)r,.
at 2a?c? dt

(11)

Substituting (10) into (8), with the use of (5) and (11), one obtains the following set of
nonhomogeneous, linear, ordinary differential equations for the particular solutions of
fnC()" t) :

(12)

[
nv ( (n - 2)V

2
) ]

-a?c?LIl!n= 2" 1- 2a?c? a(Il_2)I+nva(Il_2)1 cosCn/2-1)()t

[
nv (cn-2)V

2
) . J.+ 2" 1- 2r:I}c?- a(n-2)2+ nVa(Il-2)2 sm(n/2-1)(),

2 2 •• '. () aj;,-2 C" .) C /2 l)()-'Y.,c,LIl.fn = -!n_4+nvcos(),!n_2-2vsm '-ae;-- a(Il_4)I-nva(Il_2)1 cos n - t

-(a(n_4)2-nva(Il_2j2)sin(n/2-1)()t+TIl, (n~5), (14)

where Til is a collection of terms related to fn-2' j~-4' a(Il-2)J, a(Il-2)2, a(n-4)J, a(ll- 4)2, v,
their first and/or second order derivatives, and cosine and sine functions of ()" and it
vanishes when the crack speed v is constant. The expression for Til is lengthy and is listed
in the Appendix. Note that one superimposed dot implies differentiation once with respect
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to time, and that the dependence of rl and el on time t has been accounted for in the above
equations; hence rl, el and t must be treated as independent variables. It is observed that
Ln is a simple second-order ordinary differential operator, and it can be seen that the
nonhomogeneous terms on the right-hand side of the equations are only sine and cosine
functions of e. This makes finding the particular solutions of the above equations very easy
since, for an arbitrary value ~ not equal to (nI2+ 1), the following holds:

L;; 1 cos ~el = cos ~etl[(nI2+ 1)2 - eJ, L;; i sin ~el = sin ~etl[(nI2+ 1)2 - eJ. (15)

It is clear that the particular solutions for the first two leading terms f" (n = 1,2) are zero,
and those for n = 3,4 are found to be

1 {[. .( (n-2)V
2

) ] (n )f" = - 4r:t,fc? 2va(n_ 2) i +v 1- 2a?c? a(n- 2) 1 cos 2- 1 01

[
. .( (n-2)V

2
) ] • (n )+ 2va(n_ 2)2 +V 1- 2a?c? a(n- 2)2 sm 2- I 01

(16)

In general, solutions for In and f,,+ I, where n is an odd number and n ~ 5, can be easily
obtained in terms of a common expression by solving eqn (14) progressively from those f"
pairs that are already known. For example, for the simpler case of transient crack growth
with constant crack speed (thus Tn = 0), solutions for f" (n = 1-4) can be substituted in
(14) to yield the following expression for f" (n = 5,6) :

+ [nVa(n_ 2)2 - (1 + at:? )ii(n- 4)2] sin (n12 - 1)81

(17)

Equivalent expressions for f" have been given earlier by Freund and Rosakis (1992) under
mode I plane stress conditions for n = 1,2 and 3 when crack speed is not constant and for
n = 1--6 when crack speed is constant.

It is noted that solutions for the other displacement potentialljJ can be obtained from
those for </J by changing subscript 1to s, functions f" to gn, and coefficients an i and an2 to
bn1 and bn2 . It is also noted that the out-of-plane displacement Uz for mode III crack
propagation is governed by the same wave equation as that for 1jJ, and hence will have the
same form of transient asymptotic expansion, except that n starts from - 1. With solutions
for the displacement potentials available, the transient crack-tip asymptotic expansions for
stresses and displacements can be readily derived by substituting the expressions for the
potentials into eqns (1) and (2) and by noting

o 0 sin Op 0
:1=cosOp~--~O '
uX urp rp u p

o ( . 0 cos Op 0)
oy = ap sm Op orp + -----;:;- oOp ,

(f3 = I, s).

(18)

Coefficients ani, a n2, bnl and bn2 are related through the traction-free conditions along the
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crack surfaces, and it can be shown that those for n = I are related to the instantaneous
dynamic stress intensity factors K,(t) and Ku(t). For brevity, explicit expressions for the
mixed-mode stress and displacement fields are not attempted here. However, a three-term
(n = 3) expansion of the stress field for nonuniform mode I crack growth can be found in
Rosakis et al. (1991).
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APPENDIX: EXPRESSION FOR Tn OF EQN (14)

. D/;,_, D'/;,_2 0/~_4 0/:_ 4
T" = f/,f,,-2+ 112-a8; +1}3 Del +1}4fn-4+1}',!,,-4+1}6--"iiiJ; +f/, ao,

+1}, il
2
!;';.4 +1}9 cos (n/2- 1)0,+1} 10 sin (n/2-I)lI,+1} II cos (n/2- 3)0,
cO,'

+1} 11 sin (n/2-3W,+1} IJ cos (n/2-5)O,+1}14 sin (n/2- 5)0[.

where 11k (k = 1-14) are given by

n6[( (n-4)V
2

) (n-4)v
2

]
I} I =_. 1- --,--,---- cos 0, + --2,--- cos 30, ,

2 4iXici 4iX, Ci

.[( (n-2)V
2
). (n-2)v

2
• J

I}, = -v 1- --2-'- sm 8,+-22.' Sin 38, ,
2iX, c, iX, [,

1}4 = (n-;2~ [8iX1cl (vi; +6') 3(n-6)rJ'v 2
] - (n-: 2}r2iXlcl(1'v+ 6') --(n-6W1"} cos 20,

32iX, C, 8iX, CI

(n-2)(n-6)t"l"
-..-----.... -- cos 40"

32o:M

(n-2)lil'
I}\ = (I-cos 20,),

\ . (n _4)6 2
1'2 •

1}6=-':j-4!2iXlcl(1'v+62)-(n-6W21'2]sm20,+ 8 44 sm48/,
4<x/ CI iXlC,

Ill'
117 = sin 20[,
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nv (n - 2)v 2 (n - 2)vv .
2 2rxlcl ain-l)Z - 2rxlc1 G(n-4)2

(n- 2)(n-4)V2v2

16rxfc1 a(n-4) "
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It is worth noting that the presence of the large number of terms in Tn is solely due to the time dependence
of the crack propagation speed v and the coefficients, a(n_2)1, a(n_2j2' a(n-4j 1 and a(n-4j2, for the original steady­
state series expansions. As such, the transient field expansions do not introduce any more unknown coefficients
than their steady-state counterparts, and all the extra terms, being associated with the time derivatives of the
crack speed and existing coefficients, must be included, unless these time derivatives are identically zero, to account
correctly for any transient effects during a nonuniform crack propagation event.
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